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Preface
We are proud that this book is the recipient of the Textbook
Excellence Award from the Text & Academic Authors Asso-
ciation. Its quality owes much to the many professors who
have taken the time to write and share their pedagogical
expertise. We thank them all.

This 12th edition of Elementary Linear Algebra has a new
contemporary design, many new exercises, and some orga-
nizational changes suggested by the classroom experience
ofmany users. However, the fundamental philosophy of this
book has not changed. It provides an introductory treatment
of linear algebra that is suitable for a first undergraduate
course. Its aim is to present the fundamentals of the sub-
ject in the clearest possible way, with sound pedagogy being
the main consideration. Although calculus is not a prereq-
uisite, some optional material here is clearlymarked for stu-
dents with a calculus background. If desired, that material
can be omitted without loss of continuity. Technology is not
required to use this text. However, clearly marked exercises
that require technology are included for those who would
like to use MATLAB, Mathematica, Maple, or other soft-
ware with linear algebra capabilities. Supporting data files
are posted on both of the following sites:

www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in this Edition
Many parts of the text have been revised based on an exten-
sive set of reviews. Here are the primary changes:

• Earlier Linear Transformations — Selected mate-
rial on linear transformations that was covered later in
the previous edition has been moved to Chapter 1 to
provide amore complete early introduction to the topic.
Specifically, some of the material in Sections 4.10 and
4.11 of the previous edition was extracted to form the
new Section 1.9, and the remaining material is now in
Section 8.6.

• New Section 4.3 Devoted to Spanning Sets— Sec-
tion 4.2 of the previous edition dealt with both sub-
spaces and spanning sets. Classroom experience has
suggested that too many concepts were being intro-
duced at once, so we have slowed down the pace and
split off the material on spanning sets to create a new
Section 4.3.

• New Examples — New examples have been added,
where needed, to support the exercise sets.

• New Exercises — New exercises have been added
with special attention to the expanded early introduc-
tion to linear transformations.

Alternative Version
As detailed on the front endpapers, this version of the
text includes numerous real-world applications. However,
instructors who want to cover a range of applications
in more detail might consider the alternative version of
this text, Elementary Linear Algebra with Applications by
Howard Anton, Chris Rorres, and Anton Kaul (ISBN
978-1-119-40672-3). That version contains the first nine
chapters of this text plus a tenth chapter with 20 detailed
applications. Additional applications, listed in the Table of
Contents, can be found on the the websites that accompany
this text.

Hallmark Features
• Interrelationships Among Concepts— One of our
main pedagogical goals is to convey to the student
that linear algebra is not a collection of isolated defi-
nitions and techniques, but is rather a cohesive subject
with interrelated ideas. One way in which we do this
is by using a crescendo of theorems labeled “Equiva-
lent Statements” that continually revisit relationships
among systems of equations, matrices, determinants,
vectors, linear transformations, and eigenvalues. To get
a general sense of this pedagogical technique see The-
orems 1.5.3, 1.6.4, 2.3.8, 4.9.8, 5.1.5, 6.4.5, and 8.2.4.

• Smooth Transition to Abstraction — Because the
transition from Euclidean spaces to general vector
spaces is difficult formany students, considerable effort
is devoted to explaining the purpose of abstraction and
helping the student to “visualize” abstract ideas by
drawing analogies to familiar geometric ideas.

• Mathematical Precision — We try to be as mathe-
matically precise as is reasonable for students at this
level. But we recognize that mathematical precision is
something to be learned, so proofs are presented in a
patient style that is tailored for beginners.

• Suitability for a Diverse Audience — The text
is designed to serve the needs of students in engi-
neering, computer science, biology, physics, busi-
ness, and economics, as well as those majoring in
mathematics.

• Historical Notes—We feel that it is important to give
students a sense of mathematical history and to con-
vey that real people created themathematical theorems
and equations they are studying. Accordingly, we have
included numerous “Historical Notes” that put various
topics in historical perspective.

http://www.howardanton.com
http://www.wiley.com/college/anton
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About the Exercises
• GradedExercise Sets—Each exercise set begins with
routine drill problems and progresses to problems with
more substance. These are followed by three categories
of problems, the first focusing on proofs, the second on
true/false exercises, and the third on problems requir-
ing technology. This compartmentalization is designed
to simplify the instructor’s task of selecting exercises for
homework.

• True/False Exercises — The true/false exercises are
designed to check conceptual understanding and log-
ical reasoning. To avoid pure guesswork, the students
are required to justify their responses in some way.

• Proof Exercises—Linear algebra courses vary widely
in their emphasis on proofs, so exercises involv-
ing proofs have been grouped for easy identification.
Appendix A provides students some guidance on prov-
ing theorems.

• Technology Exercises—Exercises that require tech-
nology have also been grouped. To avoid burdening the
student with typing, the relevant data files have been
posted on the websites that accompany this text.

• Supplementary Exercises—Each chapter ends with
a set of exercises that draws from all the sections in the
chapter.

Supplementary Materials for Students
Available on the Web
• Self Testing Review—This edition also has an excit-
ing new supplement, called the Linear Algebra Flash-
Card Review. It is a self-study testing system based on
the SQ3R study method that students can use to check
their mastery of virtually every fundamental concept in
this text. It is integrated intoWileyPlus, and is available
as a free app for iPads. The app can be obtained from the
Apple Store by searching for:

Anton Linear Algebra FlashCard Review

• Student Solutions Manual — This supplement
provides detailed solutions to most odd-numbered
exercises.

• Maple Data Files — Data files in Maple format for
the technology exercises that are posted on thewebsites
that accompany this text.

• Mathematica Data Files— Data files in Mathemat-
ica format for the technology exercises that are posted
on the websites that accompany this text.

• MATLABData Files—Data files inMATLAB format
for the technology exercises that are posted on the web-
sites that accompany this text.

• CSV Data Files — Data files in CSV format for the
technology exercises that are posted on the websites
that accompany this text.

• How to Read and Do Proofs — A series of videos
created by Prof. Daniel Solow of the Weatherhead
School of Management, Case Western Reserve Univer-
sity, that present various strategies for proving theo-
rems. These are available through WileyPLUS as well
as the websites that accompany this text. There is also
a guide for locating the appropriate videos for specific
proofs in the text.

• MATLAB Linear Algebra Manual and Laboratory
Projects— This supplement contains a set of labora-
tory projects written by Prof. Dan Seth of West Texas
A&M University. It is designed to help students learn
key linear algebra concepts by using MATLAB and is
available in PDF form without charge to students at
schools adopting the 12th edition of this text.

• Data Files— The data files needed for the MATLAB
Linear Algebra Manual and Lab Projects supplement.

• How to Open and Use MATLAB Files — Instruc-
tional document on how to download, open, and use
the MATLAB files accompanying this text.

Supplementary Materials for Instructors
• Instructor Solutions Manual — This supplement
provides worked-out solutions to most exercises in the
text.

• PowerPoint Slides — A series of slides that display
important definitions, examples, graphics, and theo-
rems in the book. These can also be distributed to stu-
dents as review materials or to simplify note-taking.

• Test Bank—Test questions and sample examinations
in PDF or LaTeX form.

• Image Gallery — Digital repository of images from
the text that instructors may use to generate their own
PowerPoint slides.

• WileyPLUS — An online environment for effective
teaching and learning. WileyPLUS builds student con-
fidence by taking the guesswork out of studying and by
providing a clear roadmap of what to do, how to do it,
andwhether itwas done right. Its purpose is tomotivate
and foster initiative so instructors can have a greater
impact on classroom achievement and beyond.

• WileyPLUS Question Index — This document lists
every question in the current WileyPLUS course and
provides the name, associated learning objective, ques-
tion type, and difficulty level for each. If available, it
also shows the correlation between the previous edi-
tion WileyPLUS question and the current WileyPLUS
question, so instructors can conveniently see the evolu-
tion of a question and reuse it from previous semester
assignments.
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A Guide for the Instructor
Although linear algebra courses vary widely in content and
philosophy, most courses fall into two categories, those
with roughly 40 lectures, and those with roughly 30 lec-
tures. Accordingly, we have created the following long and
short templates as possible starting points for constructing
your own course outline. Keep in mind that these are just
guides, and we fully expect that you will want to customize
them to fit your own interests and requirements. Neither of
these sample templates includes applications, so keep that
in mind as you work with them.

Long Template Short Template

Chapter 1: Systems 8 lectures 6 lectures
of Linear Equations
and Matrices

Chapter 2: 3 lectures 3 lectures
Determinants

Chapter 3: Euclidean 4 lectures 3 lectures
Vector Spaces

Chapter 4: General 8 lectures 7 lectures
Vector Spaces

Chapter 5: 3 lectures 3 lectures
Eigenvalues and
Eigenvectors

Chapter 6: Inner 3 lectures 2 lectures
Product Spaces

Chapter 7: 4 lectures 3 lectures
Diagonalization and
Quadratic Forms

Chapter 8: General 4 lectures 2 lectures
Linear
Transformations

Chapter 9: Numerical 2 lectures 1 lecture
Methods

Total: 39 lectures 30 lectures

Reviewers
The following people reviewed the plans for this edition,
critiqued much of the content, and provided insightful ped-
agogical advice:

Charles Ekene Chika, University of Texas at Dallas
Marian Hukle, University of Kansas
Bin Jiang, Portland State University
Mike Panahi, El Centro College
Christopher Rasmussen,Wesleyan University
Nathan Reff, The College at Brockport: SUNY
Mark Smith,Miami University
Rebecca Swanson, Colorado School of Mines
R. Scott Williams, University of Central Oklahoma
Pablo Zafra, Kean University

Special Contributions
Our deep appreciation is due to a number of people who
have contributed to this edition in many ways:

Prof. Mark Smith, who critiqued the FlashCard program
and suggested valuable improvements to the text exposition.
Prof. Derek Hein, whose keen eye helped us to correct
some subtle inaccuracies.
Susan Raley, who coordinated the production process and
whose attention to detail made a very complex project run
smoothly.
Prof. Roger Lipsett, whose mathematical expertise and
detailed review of the manuscript has contributed greatly to
its accuracy.
The Wiley Team, Laurie Rosatone, Terri Ward, Melissa
Whelan, Tom Kulesa, Kimberly Eskin, Crystal Franks,
Laura Abrams, Billy Ray, and Tom Nery each of whom con-
tributed their experience, skill, and expertise to the project.

HOWARD ANTON
ANTON KAUL
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CHAPTER 1

Systems of Linear
Equations and Matrices
CHAPTER CONTENTS

1.1 Introduction to Systems of Linear Equations 2

1.2 Gaussian Elimination 11

1.3 Matrices andMatrix Operations 25

1.4 Inverses; Algebraic Properties of Matrices 40

1.5 Elementary Matrices and a Method for Finding A−1 53

1.6 More on Linear Systems and Invertible Matrices 62

1.7 Diagonal, Triangular, and Symmetric Matrices 69

1.8 Introduction to Linear Transformations 76

1.9 Compositions of Matrix Transformations 90

1.10 Applications of Linear Systems 98

• Network Analysis (Traffic Flow) 98
• Electrical Circuits 100
• Balancing Chemical Equations 103
• Polynomial Interpolation 105

1.11 Leontief Input-Output Models 110

Introduction
Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices often
appear as tables of numerical data that arise from physical observations, but they occur
in various mathematical contexts as well. For example, we will see in this chapter that all
of the information required to solve a system of equations such as

5x + y = 3
2x − y = 4

is embodied in the matrix

[52
1

−1
3
4]

and that the solution of the system can be obtained by performing appropriate opera-
tions on this matrix. This is particularly important in developing computer programs for



November 12, 2018 13:09 C01 Sheet number 2 Page number 2 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

2 CHAPTER 1 Systems of Linear Equations and Matrices

solving systems of equations because computers are well suited for manipulating arrays
of numerical information. However, matrices are not simply a notational tool for solving
systems of equations; they can be viewed as mathematical objects in their own right, and
there is a rich and important theory associated with them that has a multitude of practi-
cal applications. It is the study of matrices and related topics that forms the mathematical
field that we call “linear algebra.” In this chapter we will begin our study of matrices.

1.1 Introduction to Systems of
Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology
and discuss a method for solving such systems.

Linear Equations
Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)
and in three dimensions a plane in a rectangular xyz-coordinate system can be represented
by an equation of the form

ax + by + cz = d (a, b, c not all 0)
These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b (1)
where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, wewill often use variableswithout subscripts andwrite linear equa-
tions as

a1x + a2 y = b (2)
a1x + a2 y + a3z = b (3)

In the special case where b = 0, Equation (1) has the form
a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All vari-
ables occur only to the first power and do not appear, for example, as arguments of trigono-
metric, logarithmic, or exponential functions. The following are linear equations:

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x− y+ 3z = −1 x1 + x2 + ⋅ ⋅ ⋅ + xn = 1

The following are not linear equations:

x+ 3y2 = 4 3x+ 2y− xy = 5
sin x+ y = 0 √x1 + 2x2 + x3 = 1
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Afinite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4 (5–6)

A general linear system ofm equations in the n unknowns x1, x2, . . . , xn can be written as
The double subscripting on
the coefficients ai j of the
unknowns gives their loca-
tion in the system—the first
subscript indicates the equa-
tion in which the coefficient
occurs, and the second
indicates which unknown
it multiplies. Thus, a12 is
in the first equation and
multiplies x2.

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn
makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1, −2) and (1, 2, −1)

in which the names of the variables are omitted. This notation allows us to interpret these
solutions geometrically as points in two-dimensional and three-dimensional space. More
generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn
of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems in Two and Three Unknowns
Linear systems in two unknowns arise in connectionwith intersections of lines. For exam-
ple, consider the linear system

a1x + b1y = c1
a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and con-
sequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.
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x

y

No solution

x

y

One solution

x

y

In,nitely many
solutions

(coincident lines)

FIGURE 1.1.1

In general, we say that a linear system is consistent if it has at least one solution
and inconsistent if it has no solutions. Thus, a consistent linear system of two equa-
tions in two unknowns has either one solution or infinitely many solutions—there are
no other possibilities. The same is true for a linear system of three equations in three
unknowns

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any, corre-
spond to points where all three planes intersect, so again we see that there are only three
possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions
(three parallel planes;

no common intersection)

No solutions
(two parallel planes;

no common intersection)

No solutions
(no common intersection)

In5nitely many solutions
(planes are all coincident;

intersection is a plane)

In5nitely many solutions
(intersection is a line)

One solution
(intersection is a point)

No solutions
(two coincident planes

parallel to the third;
no common intersection)

In5nitely many solutions
(two coincident planes;

intersection is a line)

FIGURE 1.1.2

Wewill prove later that our observations about the number of solutions of linear sys-
tems of two equations in two unknowns and linear systems of three equations in three
unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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EXAMPLE 2 | A Linear System with One Solution

Solve the linear system
x− y = 1
2x+ y = 6

Solution We can eliminate x from the second equation by adding−2 times the first equa-
tion to the second. This yields the simplified system

x− y = 1
3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first equa-

tion we obtain x = 1+ y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system intersect
at the single point ( 73 ,

4
3 ). We leave it for you to check this by graphing the lines.

EXAMPLE 3 | A Linear System with No Solutions

Solve the linear system
x+ y = 4

3x+ 3y = 6

Solution We can eliminate x from the second equation by adding−3 times the first equa-
tion to the second equation. This yields the simplified system

x+ y = 4
0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that they
have the same slope but different y-intercepts.

EXAMPLE 4 | A Linear System with Infinitely Many Solutions

Solve the linear system
4x− 2y = 1
16x− 8y = 4

Solution We can eliminate x from the second equation by adding−4 times the first equa-
tion to the second. This yields the simplified system

4x− 2y = 1
0 = 0

The second equation does not impose any restrictions on x and y and hence can be omitted.
Thus, the solutions of the system are those values of x and y that satisfy the single equation

4x− 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original sys-
tem coincide. Oneway to describe the solution set is to solve this equation for x in terms of y to



November 12, 2018 13:09 C01 Sheet number 6 Page number 6 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

6 CHAPTER 1 Systems of Linear Equations and Matrices

obtain x = 1
4 +

1
2 y and then assign an arbitrary value t (called aparameter) to y. This allows

us to express the solution by the pair of equations (called parametric equations)

x = 1
4 +

1
2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numerical
values for the parameter t. For example, t = 0 yields the solution ( 14 , 0), t = 1 yields the

solution ( 34 , 1), and t = −1 yields the solution (− 1
4 , −1). You can confirm that these are

solutions by substituting their coordinates into the given equations.

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x= t be the
parameter. The resulting
parametric equations would
look different but would
define the same solution set.

EXAMPLE 5 | A Linear System with Infinitely Many Solutions

Solve the linear system
x− y+ 2z = 5

2x− 2y+ 4z = 10
3x− 3y+ 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and that
those values of x, y, and z that satisfy the equation

x− y+ 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9). We can
do this by first solving this equation for x in terms of y and z, then assigning arbitrary values
r and s (parameters) to these two variables, and then expressing the solution by the three
parametric equations

x = 5+ r− 2s, y = r, z = s
Specific solutions can be obtained by choosing numerical values for the parameters r and s.
For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and Elementary Row Operations
As the number of equations and unknowns in a linear system increases, so does the com-
plexity of the algebra involved in finding solutions. The required computations can be
mademoremanageable by simplifying notation and standardizing procedures. For exam-
ple, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the linear
system

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers

⎡⎢⎢⎢⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2
...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤⎥⎥⎥⎥
⎦

This is called the augmentedmatrix for the system. For example, the augmented matrix

As noted in the introduc-
tion to this chapter, the
term “matrix” is used in
mathematics to denote a
rectangular array of num-
bers. In a later section we
will study matrices in detail,
but for now we will only be
concerned with augmented
matrices for linear systems.

for the system of equations
x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

is [
1 1 2 9
2 4 −3 1
3 6 −5 0

]
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Historical Note

Maxime Bôcher
(1867–1918)

The first known use of augmented matrices appeared between
200 B.C. and 100 B.C. in a Chinesemanuscript entitledNineChapters
of Mathematical Art. The coefficients were arranged in columns
rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns.
The actual use of the term augmentedmatrix appears to have been
introduced by the American mathematician Maxime Bôcher
in his book Introduction to Higher Algebra, published in 1907.
In addition to being an outstanding research mathematician and
an expert in Latin, chemistry, philosophy, zoology, geography,
meteorology, art, andmusic, Bôcherwas an outstanding expositor
of mathematics whose elementary textbooks were greatly appre-
ciated by students and are still in demand today.

[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations

and an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply to
understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

x + y + 2z = 9
2x + 4y − 3z = 1
3x + 6y − 5z = 0

⎡
⎢
⎢
⎣

1 1 2 9
2 4 −3 1
3 6 −5 0

⎤
⎥
⎥
⎦
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Add−2 times the first equation to the second
to obtain

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

Add−2 times the first row to the second to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
3 6 −5 0

⎤
⎥
⎥
⎦

Add −3 times the first equation to the third
to obtain

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

Add −3 times the first row to the third to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
0 3 −11 −27

⎤
⎥
⎥
⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

3y − 11z = −27

Multiply the second row by 1
2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27

⎤
⎥
⎥
⎦

Add −3 times the second equation to the
third to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

− 1
2 z = − 3

2

Add−3 times the second row to the third to
obtain

⎡
⎢
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2

⎤
⎥
⎥
⎥
⎦

Multiply the third equation by−2 to obtain
x + y + 2z = 9

y − 7
2 z = − 17

2
z = 3

Multiply the third row by−2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3

⎤
⎥
⎥
⎦

Add−1 times the second equation to the first
to obtain

x + 11
2 z =

35
2

y − 7
2 z = − 17

2
z = 3

Add−1 times the second row to the first to
obtain

⎡
⎢
⎢
⎢
⎣

1 0 11
2

35
2

0 1 − 7
2 − 17

2
0 0 1 3

⎤
⎥
⎥
⎥
⎦

Add−11
2 times the third equation to the first

and 7
2 times the third equation to the second

to obtain x = 1
y = 2

z = 3

Add− 11
2 times the third row to the first and

7
2 times the third row to the second to obtain

⎡
⎢
⎢
⎣

1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎥
⎥
⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as
the ordered triple (1, 2, 3)
with the understanding that
the numbers in the triple
are in the same order as
the variables in the system,
namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x1,
x2, and x3.

a. x1 + 5x2 −√2 x3 = 1 b. x1 + 3x2 + x1x3 = 2

c. x1 = −7x2 + 3x3 d. x−21 + x2 + 8x3 = 5

e. x3/51 − 2x2 + x3 = 4 f. 𝜋x1 −√2 x2 = 71/3

2. In each part, determine whether the equation is linear in x
and y.

a. 21/3x+√3y = 1 b. 2x1/3 + 3√y = 1

c. cos (𝜋7 )x− 4y = log 3 d. 𝜋
7 cos x− 4y = 0

e. xy = 1 f. y+ 7 = x
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3. Using the notation of Formula (7), write down a general linear
system of

a. two equations in two unknowns.
b. three equations in three unknowns.
c. two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a system of linear equations in the
unknowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. a. [
2 0 0
3 −4 0
0 1 1

] b. [
3 0 −2 5
7 1 4 −3
0 −2 1 7

]

6. a. [
0 3 −1 −1 −1
5 2 0 −3 −6]

b.
⎡
⎢
⎢
⎢
⎣

3 0 1 −4 3
−4 0 4 1 −3
−1 3 0 −2 −9
0 0 0 −1 −2

⎤
⎥
⎥
⎥
⎦

In each part of Exercises 7–8, find the augmented matrix for the lin-
ear system.

7. a. −2x1 = 6
3x1 = 8
9x1 = −3

b. 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

c. 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1
6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. a. 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

b. 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

c. x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1
3x1 − 5x2 − 3x3 = 1

a. (3, 1, 1) b. (3,−1, 1) c. (13, 5, 2)

d. ( 132 ,
5
2 , 2) e. (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

a. ( 57 ,
8
7 , 1) b. ( 57 ,

8
7 , 0) c. (5, 8, 1)

d. ( 57 ,
10
7 ,

2
7) e. ( 57 ,

22
7 , 2)

11. In each part, solve the linear system, if possible, and use the
result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

a. 3x− 2y = 4
6x− 4y = 9

b. 2x− 4y = 1
4x− 8y = 2

c. x− 2y = 0
x− 4y = 8

12. Under what conditions on a and b will the linear system have
no solutions, one solution, infinitely many solutions?

2x− 3y = a
4x− 6y = b

In each part of Exercises 13–14, use parametric equations to describe
the solution set of the linear equation.
13. a. 7x− 5y = 3

b. 3x1 − 5x2 + 4x3 = 7

c. −8x1 + 2x2 − 5x3 + 6x4 = 1

d. 3𝑣 − 8𝑤 + 2x− y+ 4z = 0

14. a. x+ 10y = 2

b. x1 + 3x2 − 12x3 = 3

c. 4x1 + 2x2 + 3x3 + x4 = 20

d. 𝑣 +𝑤 + x− 5y+ 7z = 0

In Exercises 15–16, each linear system has infinitely many solutions.
Use parametric equations to describe its solution set.

15. a. 2x− 3y = 1
6x− 9y = 3

b. x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. a. 6x1 + 2x2 = −8
3x1 + x2 = −4

b. 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that will
create a 1 in the upper left corner of the given augmentedmatrix and
will not create any fractions in its first row.

17. a. [
−3 −1 2 4
2 −3 3 2
0 2 −3 1

] b. [
0 −1 −5 0
2 −9 3 2
1 4 −3 3

]

18. a. [
2 4 −6 8
7 1 4 3

−5 4 2 7
] b. [

7 −4 −2 2
3 −1 8 1

−6 3 −1 4
]

In Exercises 19–20, find all values of k for which the given aug-
mented matrix corresponds to a consistent linear system.

19. a. [1 k −4
4 8 2] b. [1 k −1

4 8 −4]

20. a. [ 3 −4 k
−6 8 5] b. [k 1 −2

4 −1 2]




