

Applications and Historical Topics

Aeronautical Engineering
Lifting force 109
Solar powered aircraft 391
Supersonic aircraft flutter 318
Yaw, pitch, and roll 504
Astrophysics
Kepler's laws 10.1*
Measurement of temperature on Venus 390
Biology and Ecology
Air quality prediction 338
Forest management 10.7*
Genetics 349, 10.14*
Harvesting of animal populations 10.16*
Population dynamics 338, 10.15*
Wildlife migration 332
Business and Economics
Game theory 10.6*
Leontief input-output models 110-114, Module 8**
Market share 329-330, 338
Sales and cost analysis 39
Sales projections using least squares 391
Calculus
Approximate integration 107-108
Derivatives of matrices 116
Integral inner products 347
Partial fractions 25
Chemistry
Balancing chemical equations 103-105
Civil Engineering
Equilibrium of rigid bodies Module 5**
Traffic flow 98-99

Computer Science

Color models for digital displays 68, 156
Computer graphics 10.8*
Facial recognition 296, 10.20*
Fractals 10.11*
Google site ranking 10.19*
Warps and morphs 10.18*
Cryptography
Hill ciphers 10.13*
Differential Equations
First-order linear systems 324

Electrical Engineering
Circuit analysis 100-103
Digitizing signals 205
LRC circuits 328

Geometry in Euclidean Space
Angle between a diagonal of a cube and an edge 164
Direction angles and cosines 171
Generalized theorem of Pythagoras 179, 355
Parallelogram law 171
Projection on a line 178
Reflection about a line 178
Rotation about a line 407
Rotation of coordinate axes 403-405
Vector methods in plane geometry Module 4**
Library Science
ISBN numbers 168

Linear Algebra Historical Figures
Harry Bateman 535
Eugene Beltrami 538
Maxime Bôcher 7
Viktor Bunyakovsky 166
Lewis Carroll 122
Augustin Cauchy 136
Arthur Cayley 31, 36
Gabriel Cramer 140
Leonard Dickson 138
Albert Einstein 152
Gotthold Eisenstein 31
Leonhard Euler A11
Leonardo Fibonacci 53
Jean Fourier 396
Carl Friedrich Gauss 16
Josiah Gibbs 163, 191
Gene Golub 538
Jorgen Pederson Gram 369
Hermann Grassman 204
Jacques Hadamard 144
Charles Hermite 437
Ludwig Hesse 432
Karl Hessenberg 414
George Hill 221
Alton Householder 407
Camille Jordan 538
Wilhelm Jordan 16

Gustav Kirchhoff 102
Joseph Lagrange 192
Wassily Leontief 111
Andrei Markov 332
Abraham de Moivre A11
John Rayleigh 524
Erhardt Schmidt 369
Issai Schur 414
Hermann Schwarz 166
James Sylvester 36
Olga Todd 318
Alan Turing 512
John Venn A4
Herman Weyl 538
Jósef Wroński 234

Mathematical History
Early history of linear algebra 10.2*
Mathematical Modeling
Chaos 10.12*
Cubic splines 10.3*
Curve fitting 10, 24, 109, 10.1*
Exponential models 391
Graph theory 10.5*
Least squares 376-397, 10.17*
Linear, quadratic, cubic models 389
Logarithmic models 391
Markov chains 329-337, 10.4*
Modeling experimental data 385-386, 391
Population growth 10.15*
Power function models 391
Mathematics
Cauchy-Schwarz inequality 352-353
Constrained extrema 429-435
Fibonacci sequences 53
Fourier series 392-396
Hermite polynomials 247
Laguerre polynomials 247
Legendre polynomials 370-371
Quadratic forms 416-436
Sylvester's inequality 289
Medicine and Health
Computed tomography 10.10*
Genetics 349, 10.14*
Modeling human hearing 10.17*
Nutrition 9

Numerical Linear Algebra
Cost in flops of algorithms 528-531
Data compression 540-543
Facial recognition 296, 10.20*
FBI fingerprint storage 542
Fitting curves to data $10,24,109,385,10.1^{*}$
Householder reflections 407
LU-decomposition 509-517
Polynomial interpolation 105-107
Power method 519-527
Powers of a matrix 333-334
QR-decomposition 361-376, 383
Roundoff error, instability 22
Schur decomposition 414
Singular value decomposition 532-540
Spectral decomposition 411-413
Upper Hessenberg decomposition 414
Operations Research
Assignment of resources Module 6**
Linear programming Modules 1-3**
Storage and warehousing 152
Physics
Displacement and work 182
Experimental data 152
Mass-spring systems 220
Mechanical systems 152
Motion of falling body using least squares 389-390
Quantum mechanics 323
Resultant of forces 171
Scalar moment of force 199
Spring constant using least squares 388
Static equilibrium 172
Temperature distribution 10.9*
Torque 199
Probability and Statistics
Arithmetic average 343
Sample mean and variance 427
Psychology
Behavior 338

*Section in the Applications Version **Web Module

Elementary Linear Algebra

Elementary Linear Algebra

HOWARD ANTON

Professor Emeritus, Drexel University

ANTON KAUL

Professor, California Polytechnic State University

VICE PRESIDENT AND EDITORIAL DIRECTOR	Laurie Rosatone
EXECUTIVE EDITOR	Terri Ward
PRODUCT DESIGNER	Melissa Whelan
PRODUCT DESIGN MANAGER	Tom Kulesa
PRODUCT DESIGN EDITORORIAL ASSISTANT	Kimberly Eskin
EDITORIAL ASSISTANT	Crystal Franks
SENIOR CONTENT MANAGER	Valeri Zaborski
SENIOR PRODUCTION EDITOR	Laura Abrams
SENIOR MARKETING MANAGER	Michael MacDougald
PHOTO EDITOR	Billy Ray
COVER DESIGNER	Tom Nery
COVER AND CHAPTER OPENER PHOTO	© Lantica/Shutterstock

This book was set in STIXTwoText by MPS Limited and printed and bound by Quad Graphics/ Versailles. The cover was printed by Quad Graphics/Versailles.

This book is printed on acid-free paper. ©
Founded in 1807, John Wiley \& Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright 2019, 2013, 2010, 2005, 2000, 1994, 1991, 1987, 1984, 1981, 1977, 1973
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 7486011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

ISBN-13: 978-1-119-40677-8

The inside back cover will contain printing identification and country of origin if omitted from this page. In addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed in the United States of America
10987654321

To

My wife, Pat
My children, Brian, David, and Lauren
My parents, Shirley and Benjamin
In memory of Prof. Leon Bahar, who fostered my love of mathematics
My benefactor, Stephen Girard (1750-1831), whose philanthropy changed my life

Howard Anton

To
My wife, Michelle, and my boys, Ulysses and Seth

HOWARD ANTON obtained his B.A. from Lehigh University, his M.A. from the University of Illinois, and his Ph.D. from the Polytechnic Institute of Brooklyn (now part of New York University), all in mathematics. In the early 1960s he was employed by the Burroughs Corporation at Cape Canaveral, Florida, where he worked on mathematical problems in the manned space program. In 1968 he joined the Mathematics Department of Drexel University, where he taught and did research until 1983. Since then he has devoted the majority of his time to textbook writing and activities for mathematical associations. Dr. Anton was president of the Eastern Pennsylvania and Delaware Section of the Mathematical Association of America, served on the Board of Governors of that organization, and guided the creation of its Student Chapters. He is the coauthor of a popular calculus text and has authored numerous research papers in functional analysis, topology, and approximation theory. His textbooks are among the most widely used in the world. There are now more than 200 versions of his books, including translations into Spanish, Arabic, Portuguese, Italian, Indonesian, French, and Japanese. For relaxation, Dr. Anton enjoys travel and photography. This text is the recipient of the Textbook Excellence Award by Textbook \& Academic Authors Association.

ANTON KAUL received his B.S. from UC Davis and his M.S. and Ph.D. from Oregon State University. He held positions at the University of South Florida and Tufts University before joining the faculty at Cal Poly, San Luis Obispo in 2003, where he is currently a professor in the Mathematics Department. In addition to his work on mathematics textbooks, Dr. Kaul has done research in the area of geometric group theory and has published journal articles on Coxeter groups and their automorphisms. He is also an avid baseball fan and old-time banjo player.

We are proud that this book is the recipient of the Textbook Excellence Award from the Text \& Academic Authors Association. Its quality owes much to the many professors who have taken the time to write and share their pedagogical expertise. We thank them all.

This 12th edition of Elementary Linear Algebra has a new contemporary design, many new exercises, and some organizational changes suggested by the classroom experience of many users. However, the fundamental philosophy of this book has not changed. It provides an introductory treatment of linear algebra that is suitable for a first undergraduate course. Its aim is to present the fundamentals of the subject in the clearest possible way, with sound pedagogy being the main consideration. Although calculus is not a prerequisite, some optional material here is clearly marked for students with a calculus background. If desired, that material can be omitted without loss of continuity. Technology is not required to use this text. However, clearly marked exercises that require technology are included for those who would like to use MATLAB, Mathematica, Maple, or other software with linear algebra capabilities. Supporting data files are posted on both of the following sites:
www.howardanton.com www.wiley.com/college/anton

Summary of Changes in this Edition

Many parts of the text have been revised based on an extensive set of reviews. Here are the primary changes:

- Earlier Linear Transformations - Selected material on linear transformations that was covered later in the previous edition has been moved to Chapter 1 to provide a more complete early introduction to the topic. Specifically, some of the material in Sections 4.10 and 4.11 of the previous edition was extracted to form the new Section 1.9, and the remaining material is now in Section 8.6.
- New Section 4.3 Devoted to Spanning Sets - Section 4.2 of the previous edition dealt with both subspaces and spanning sets. Classroom experience has suggested that too many concepts were being introduced at once, so we have slowed down the pace and split off the material on spanning sets to create a new Section 4.3.
- New Examples - New examples have been added, where needed, to support the exercise sets.
- New Exercises - New exercises have been added with special attention to the expanded early introduction to linear transformations.

Alternative Version

As detailed on the front endpapers, this version of the text includes numerous real-world applications. However, instructors who want to cover a range of applications in more detail might consider the alternative version of this text, Elementary Linear Algebra with Applications by Howard Anton, Chris Rorres, and Anton Kaul (ISBN 978-1-119-40672-3). That version contains the first nine chapters of this text plus a tenth chapter with 20 detailed applications. Additional applications, listed in the Table of Contents, can be found on the the websites that accompany this text.

Hallmark Features

- Interrelationships Among Concepts - One of our main pedagogical goals is to convey to the student that linear algebra is not a collection of isolated definitions and techniques, but is rather a cohesive subject with interrelated ideas. One way in which we do this is by using a crescendo of theorems labeled "Equivalent Statements" that continually revisit relationships among systems of equations, matrices, determinants, vectors, linear transformations, and eigenvalues. To get a general sense of this pedagogical technique see Theorems 1.5.3, 1.6.4, 2.3.8, 4.9.8, 5.1.5, 6.4.5, and 8.2.4.
- Smooth Transition to Abstraction - Because the transition from Euclidean spaces to general vector spaces is difficult for many students, considerable effort is devoted to explaining the purpose of abstraction and helping the student to "visualize" abstract ideas by drawing analogies to familiar geometric ideas.
- Mathematical Precision - We try to be as mathematically precise as is reasonable for students at this level. But we recognize that mathematical precision is something to be learned, so proofs are presented in a patient style that is tailored for beginners.
- Suitability for a Diverse Audience - The text is designed to serve the needs of students in engineering, computer science, biology, physics, business, and economics, as well as those majoring in mathematics.
- Historical Notes - We feel that it is important to give students a sense of mathematical history and to convey that real people created the mathematical theorems and equations they are studying. Accordingly, we have included numerous "Historical Notes" that put various topics in historical perspective.

About the Exercises

- Graded Exercise Sets - Each exercise set begins with routine drill problems and progresses to problems with more substance. These are followed by three categories of problems, the first focusing on proofs, the second on true/false exercises, and the third on problems requiring technology. This compartmentalization is designed to simplify the instructor's task of selecting exercises for homework.
- True/False Exercises - The true/false exercises are designed to check conceptual understanding and logical reasoning. To avoid pure guesswork, the students are required to justify their responses in some way.
- Proof Exercises - Linear algebra courses vary widely in their emphasis on proofs, so exercises involving proofs have been grouped for easy identification. Appendix A provides students some guidance on proving theorems.
- Technology Exercises - Exercises that require technology have also been grouped. To avoid burdening the student with typing, the relevant data files have been posted on the websites that accompany this text.
- Supplementary Exercises - Each chapter ends with a set of exercises that draws from all the sections in the chapter.

Supplementary Materials for Students Available on the Web

- Self Testing Review - This edition also has an exciting new supplement, called the Linear Algebra FlashCard Review. It is a self-study testing system based on the SQ3R study method that students can use to check their mastery of virtually every fundamental concept in this text. It is integrated into WileyPlus, and is available as a free app for iPads. The app can be obtained from the Apple Store by searching for:

Anton Linear Algebra FlashCard Review

- Student Solutions Manual - This supplement provides detailed solutions to most odd-numbered exercises.
- Maple Data Files - Data files in Maple format for the technology exercises that are posted on the websites that accompany this text.
- Mathematica Data Files - Data files in Mathematica format for the technology exercises that are posted on the websites that accompany this text.
- MATLAB Data Files - Data files in MATLAB format for the technology exercises that are posted on the websites that accompany this text.
- CSV Data Files - Data files in CSV format for the technology exercises that are posted on the websites that accompany this text.
- How to Read and Do Proofs - A series of videos created by Prof. Daniel Solow of the Weatherhead School of Management, Case Western Reserve University, that present various strategies for proving theorems. These are available through WileyPLUS as well as the websites that accompany this text. There is also a guide for locating the appropriate videos for specific proofs in the text.
- MATLAB Linear Algebra Manual and Laboratory Projects - This supplement contains a set of laboratory projects written by Prof. Dan Seth of West Texas A\&M University. It is designed to help students learn key linear algebra concepts by using MATLAB and is available in PDF form without charge to students at schools adopting the 12th edition of this text.
- Data Files - The data files needed for the MATLAB Linear Algebra Manual and Lab Projects supplement.
- How to Open and Use MATLAB Files - Instructional document on how to download, open, and use the MATLAB files accompanying this text.

Supplementary Materials for Instructors

- Instructor Solutions Manual - This supplement provides worked-out solutions to most exercises in the text.
- PowerPoint Slides - A series of slides that display important definitions, examples, graphics, and theorems in the book. These can also be distributed to students as review materials or to simplify note-taking.
- Test Bank - Test questions and sample examinations in PDF or LaTeX form.
- Image Gallery - Digital repository of images from the text that instructors may use to generate their own PowerPoint slides.
- WileyPLUS - An online environment for effective teaching and learning. WileyPLUS builds student confidence by taking the guesswork out of studying and by providing a clear roadmap of what to do, how to do it, and whether it was done right. Its purpose is to motivate and foster initiative so instructors can have a greater impact on classroom achievement and beyond.
- WileyPLUS Question Index - This document lists every question in the current WileyPLUS course and provides the name, associated learning objective, question type, and difficulty level for each. If available, it also shows the correlation between the previous edition WileyPLUS question and the current WileyPLUS question, so instructors can conveniently see the evolution of a question and reuse it from previous semester assignments.

A Guide for the Instructor

Although linear algebra courses vary widely in content and philosophy, most courses fall into two categories, those with roughly 40 lectures, and those with roughly 30 lectures. Accordingly, we have created the following long and short templates as possible starting points for constructing your own course outline. Keep in mind that these are just guides, and we fully expect that you will want to customize them to fit your own interests and requirements. Neither of these sample templates includes applications, so keep that in mind as you work with them.

	Long Template	Short Template
Chapter 1: Systems of Linear Equations and Matrices	8 lectures	6 lectures
Chapter 2: Determinants	3 lectures	3 lectures
Chapter 3: Euclidean Vector Spaces	4 lectures	3 lectures
Chapter 4: General Vector Spaces	8 lectures	7 lectures
Chapter 5: Eigenvalues and Eigenvectors	3 lectures	3 lectures
Chapter 6: Inner Product Spaces	3 lectures	2 lectures
Chapter 7: Diagonalization and Quadratic Forms	4 lectures	3 lectures
Chapter 8: General Linear Transformations	4 lectures	2 lectures
Chapter 9: Numerical Methods	2 lectures	1 lecture
Total:	39 lectures	30 lectures

Reviewers

The following people reviewed the plans for this edition, critiqued much of the content, and provided insightful pedagogical advice:

Charles Ekene Chika, University of Texas at Dallas
Marian Hukle, University of Kansas
Bin Jiang, Portland State University
Mike Panahi, El Centro College
Christopher Rasmussen, Wesleyan University
Nathan Reff, The College at Brockport: SUNY
Mark Smith, Miami University
Rebecca Swanson, Colorado School of Mines
R. Scott Williams, University of Central Oklahoma

Pablo Zafra, Kean University

Special Contributions

Our deep appreciation is due to a number of people who have contributed to this edition in many ways:

Prof. Mark Smith, who critiqued the FlashCard program and suggested valuable improvements to the text exposition.

Prof. Derek Hein, whose keen eye helped us to correct some subtle inaccuracies.
Susan Raley, who coordinated the production process and whose attention to detail made a very complex project run smoothly.
Prof. Roger Lipsett, whose mathematical expertise and detailed review of the manuscript has contributed greatly to its accuracy.
The Wiley Team, Laurie Rosatone, Terri Ward, Melissa Whelan, Tom Kulesa, Kimberly Eskin, Crystal Franks, Laura Abrams, Billy Ray, and Tom Nery each of whom contributed their experience, skill, and expertise to the project.
1 Systems of Linear Equations and Matrices 1
1.1 Introduction to Systems of Linear Equations 2
1.2 Gaussian Elimination 11
1.3 Matrices and Matrix Operations 25
1.4 Inverses; Algebraic Properties of Matrices 40
1.5 Elementary Matrices and a Method for Finding A^{-1} 53
1.6 More on Linear Systems and Invertible Matrices 62
1.7 Diagonal, Triangular, and Symmetric Matrices 69
1.8 Introduction to Linear Transformations 76
1.9 Compositions of Matrix Transformations 90
1.10 Applications of Linear Systems 98

- Network Analysis 98
- Electrical Circuits 100
- Balancing Chemical Equations 103
- Polynomial Interpolation 105
1.11 Leontief Input-Output Models 110
2 Determinants 118
2.1 Determinants by Cofactor Expansion 118
2.2 Evaluating Determinants by Row Reduction 126
2.3 Properties of Determinants; Cramer's Rule 133
3 Euclidean Vector Spaces 146
3.1 Vectors in 2-Space, 3-Space, and n-Space 146
3.2 Norm, Dot Product, and Distance in R^{n} 158
3.3 Orthogonality 172
3.4 The Geometry of Linear Systems 183
3.5 Cross Product 190
4 General Vector Spaces 202
4.1 Real Vector Spaces 202
4.2 Subspaces 211
4.3 Spanning Sets 220
4.4 Linear Independence 228
4.5 Coordinates and Basis 238
4.6 Dimension 248
4.7 Change of Basis 256
4.8 Row Space, Column Space, and Null Space 263
4.9 Rank, Nullity, and the Fundamental Matrix Spaces 276
5 Eigenvalues and Eigenvectors 291
5.1 Eigenvalues and Eigenvectors 291
5.2 Diagonalization 301
5.3 Complex Vector Spaces 311
5.4 Differential Equations 323
5.5 Dynamical Systems and Markov Chains 329
6 Inner Product Spaces 341
6.1 Inner Products 341
6.2 Angle and Orthogonality in Inner Product Spaces 352
6.3 Gram-Schmidt Process; QR-Decomposition 361
6.4 Best Approximation; Least Squares 376
6.5 Mathematical Modeling Using Least Squares 385
6.6 Function Approximation; Fourier Series 392
7 Diagonalization and Quadratic Forms 399
7.1 Orthogonal Matrices 399
7.2 Orthogonal Diagonalization 408
7.3 Quadratic Forms 416
7.4 Optimization Using Quadratic Forms 429
7.5 Hermitian, Unitary, and Normal Matrices 436
8 General Linear Transformations 446
8.1 General Linear Transformations 446
8.2 Compositions and Inverse Transformations 459
8.3 Isomorphism 471
8.4 Matrices for General Linear Transformations 477
8.5 Similarity 487
8.6 Geometry of Matrix Operators 493
9 Numerical Methods 509
9.1 LU-Decompositions 509
9.2 The Power Method 519
9.3 Comparison of Procedures for Solving Linear Systems 528
9.4 Singular Value Decomposition 532
9.5 Data Compression Using Singular Value Decomposition 540
SUPPLEMENTAL ONLINE TOPICS- LINEAR PROGRAMMING - A GEOMETRIC APPROACH- LINEAR PROGRAMMING - BASIC CONCEPTS- LINEAR PROGRAMMING - THE SIMPLEX METHOD- VECTORS IN PLANE GEOMETRY- EQUILIBRIUM OF RIGID BODIES- THE ASSIGNMENT PROBLEM
- THE DETERMINANT FUNCTION
- LEONTIEF ECONOMIC MODELS
APPENDIX A Working with Proofs A1
APPENDIX B Complex Numbers A5
ANSWERS TO EXERCISES A13
INDEX I1

CHAPTER 1

Systems of Linear Equations and Matrices

CHAPTER CONTENTS

1.1 Introduction to Systems of Linear Equations

1.2 Gaussian Elimination 11
1.3 Matrices and Matrix Operations 25
1.4 Inverses; Algebraic Properties of Matrices 40
1.5 Elementary Matrices and a Method for Finding $A^{-1} 53$
1.6 More on Linear Systems and Invertible Matrices 62
1.7 Diagonal, Triangular, and Symmetric Matrices 69
1.8 Introduction to Linear Transformations 76
1.9 Compositions of Matrix Transformations 90
1.10 Applications of Linear Systems 98

- Network Analysis (Traffic Flow) 98
- Electrical Circuits 100
- Balancing Chemical Equations 103
- Polynomial Interpolation 105
1.11 Leontief Input-Output Models 110

Introduction

Information in science, business, and mathematics is often organized into rows and columns to form rectangular arrays called "matrices" (plural of "matrix"). Matrices often appear as tables of numerical data that arise from physical observations, but they occur in various mathematical contexts as well. For example, we will see in this chapter that all of the information required to solve a system of equations such as

$$
\begin{aligned}
& 5 x+y=3 \\
& 2 x-y=4
\end{aligned}
$$

is embodied in the matrix

$$
\left[\begin{array}{rrr}
5 & 1 & 3 \\
2 & -1 & 4
\end{array}\right]
$$

and that the solution of the system can be obtained by performing appropriate operations on this matrix. This is particularly important in developing computer programs for
solving systems of equations because computers are well suited for manipulating arrays of numerical information. However, matrices are not simply a notational tool for solving systems of equations; they can be viewed as mathematical objects in their own right, and there is a rich and important theory associated with them that has a multitude of practical applications. It is the study of matrices and related topics that forms the mathematical field that we call "linear algebra." In this chapter we will begin our study of matrices.

1.1 Introduction to Systems of Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we will study in this course. In this first section we will introduce some basic terminology and discuss a method for solving such systems.

Linear Equations

Recall that in two dimensions a line in a rectangular $x y$-coordinate system can be represented by an equation of the form

$$
a x+b y=c \quad(a, b \text { not both } 0)
$$

and in three dimensions a plane in a rectangular xyz-coordinate system can be represented by an equation of the form

$$
a x+b y+c z=d \quad(a, b, c \text { not all } 0)
$$

These are examples of "linear equations," the first being a linear equation in the variables x and y and the second a linear equation in the variables x, y, and z. More generally, we define a linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ to be one that can be expressed in the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are constants, and the a 's are not all zero. In the special cases where $n=2$ or $n=3$, we will often use variables without subscripts and write linear equations as

$$
\begin{align*}
& a_{1} x+a_{2} y=b \tag{2}\\
& a_{1} x+a_{2} y+a_{3} z=b \tag{3}
\end{align*}
$$

In the special case where $b=0$, Equation (1) has the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0 \tag{4}
\end{equation*}
$$

which is called a homogeneous linear equation in the variables $x_{1}, x_{2}, \ldots, x_{n}$.

EXAMPLE 1 | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All variables occur only to the first power and do not appear, for example, as arguments of trigonometric, logarithmic, or exponential functions. The following are linear equations:

$$
\begin{array}{ll}
x+3 y=7 & x_{1}-2 x_{2}-3 x_{3}+x_{4}=0 \\
\frac{1}{2} x-y+3 z=-1 & x_{1}+x_{2}+\cdots+x_{n}=1
\end{array}
$$

The following are not linear equations:

$$
\begin{array}{ll}
x+3 y^{2}=4 & 3 x+2 y-x y=5 \\
\sin x+y=0 & \sqrt{x_{1}}+2 x_{2}+x_{3}=1
\end{array}
$$

A finite set of linear equations is called a system of linear equations or, more briefly, a linear system. The variables are called unknowns. For example, system (5) that follows has unknowns x and y, and system (6) has unknowns x_{1}, x_{2}, and x_{3}.

$$
\begin{array}{ll}
5 x+y=3 & 4 x_{1}-x_{2}+3 x_{3}=-1 \\
2 x-y=4 & 3 x_{1}+x_{2}+9 x_{3}=-4 \tag{5-6}
\end{array}
$$

A general linear system of m equations in the n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ can be written as

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots \tag{7}\\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

A solution of a linear system in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ is a sequence of n numbers $s_{1}, s_{2}, \ldots, s_{n}$ for which the substitution

$$
x_{1}=s_{1}, \quad x_{2}=s_{2}, \ldots, \quad x_{n}=s_{n}
$$

makes each equation a true statement. For example, the system in (5) has the solution

$$
x=1, \quad y=-2
$$

and the system in (6) has the solution

$$
x_{1}=1, \quad x_{2}=2, \quad x_{3}=-1
$$

These solutions can be written more succinctly as

$$
(1,-2) \text { and }(1,2,-1)
$$

in which the names of the variables are omitted. This notation allows us to interpret these solutions geometrically as points in two-dimensional and three-dimensional space. More generally, a solution

$$
x_{1}=s_{1}, \quad x_{2}=s_{2}, \ldots, \quad x_{n}=s_{n}
$$

of a linear system in n unknowns can be written as

$$
\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

which is called an ordered n-tuple. With this notation it is understood that all variables appear in the same order in each equation. If $n=2$, then the n-tuple is called an ordered pair, and if $n=3$, then it is called an ordered triple.

Linear Systems in Two and Three Unknowns

Linear systems in two unknowns arise in connection with intersections of lines. For example, consider the linear system

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

in which the graphs of the equations are lines in the $x y$-plane. Each solution (x, y) of this system corresponds to a point of intersection of the lines, so there are three possibilities (Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and consequently no solution.
2. The lines may intersect at only one point, in which case the system has exactly one solution.
3. The lines may coincide, in which case there are infinitely many points of intersection (the points on the common line) and consequently infinitely many solutions.

The double subscripting on the coefficients $a_{i j}$ of the unknowns gives their location in the system-the first subscript indicates the equation in which the coefficient occurs, and the second indicates which unknown it multiplies. Thus, a_{12} is in the first equation and multiplies x_{2}.

FIGURE 1.1.1

In general, we say that a linear system is consistent if it has at least one solution and inconsistent if it has no solutions. Thus, a consistent linear system of two equations in two unknowns has either one solution or infinitely many solutions-there are no other possibilities. The same is true for a linear system of three equations in three unknowns

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned}
$$

in which the graphs of the equations are planes. The solutions of the system, if any, correspond to points where all three planes intersect, so again we see that there are only three possibilities-no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

FIGURE 1.1.2

We will prove later that our observations about the number of solutions of linear systems of two equations in two unknowns and linear systems of three equations in three unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities.

EXAMPLE 2 | A Linear System with One Solution

Solve the linear system

$$
\begin{array}{r}
x-y=1 \\
2 x+y=6
\end{array}
$$

Solution We can eliminate x from the second equation by adding -2 times the first equation to the second. This yields the simplified system

$$
\begin{aligned}
x-y & =1 \\
3 y & =4
\end{aligned}
$$

From the second equation we obtain $y=\frac{4}{3}$, and on substituting this value in the first equation we obtain $x=1+y=\frac{7}{3}$. Thus, the system has the unique solution

$$
x=\frac{7}{3}, \quad y=\frac{4}{3}
$$

Geometrically, this means that the lines represented by the equations in the system intersect at the single point $\left(\frac{7}{3}, \frac{4}{3}\right)$. We leave it for you to check this by graphing the lines.

EXAMPLE 3 | A Linear System with No Solutions

Solve the linear system

$$
\begin{array}{r}
x+y=4 \\
3 x+3 y=6
\end{array}
$$

Solution We can eliminate x from the second equation by adding -3 times the first equation to the second equation. This yields the simplified system

$$
\begin{aligned}
x+y & =4 \\
0 & =-6
\end{aligned}
$$

The second equation is contradictory, so the given system has no solution. Geometrically, this means that the lines corresponding to the equations in the original system are parallel and distinct. We leave it for you to check this by graphing the lines or by showing that they have the same slope but different y-intercepts.

EXAMPLE 4 | A Linear System with Infinitely Many Solutions

Solve the linear system

$$
\begin{array}{r}
4 x-2 y=1 \\
16 x-8 y=4
\end{array}
$$

Solution We can eliminate x from the second equation by adding -4 times the first equation to the second. This yields the simplified system

$$
\begin{aligned}
4 x-2 y & =1 \\
0 & =0
\end{aligned}
$$

The second equation does not impose any restrictions on x and y and hence can be omitted. Thus, the solutions of the system are those values of x and y that satisfy the single equation

$$
\begin{equation*}
4 x-2 y=1 \tag{8}
\end{equation*}
$$

Geometrically, this means the lines corresponding to the two equations in the original system coincide. One way to describe the solution set is to solve this equation for x in terms of y to

In Example 4 we could have also obtained parametric equations for the solutions by solving (8) for y in terms of x and letting $x=t$ be the parameter. The resulting parametric equations would look different but would define the same solution set.

As noted in the introduction to this chapter, the term "matrix" is used in mathematics to denote a rectangular array of numbers. In a later section we will study matrices in detail, but for now we will only be concerned with augmented matrices for linear systems.
obtain $x=\frac{1}{4}+\frac{1}{2} y$ and then assign an arbitrary value t (called a parameter) to y. This allows us to express the solution by the pair of equations (called parametric equations)

$$
x=\frac{1}{4}+\frac{1}{2} t, \quad y=t
$$

We can obtain specific numerical solutions from these equations by substituting numerical values for the parameter t. For example, $t=0$ yields the solution $\left(\frac{1}{4}, 0\right), t=1$ yields the solution $\left(\frac{3}{4}, 1\right)$, and $t=-1$ yields the solution $\left(-\frac{1}{4},-1\right)$. You can confirm that these are solutions by substituting their coordinates into the given equations.

EXAMPLE 5 | A Linear System with Infinitely Many Solutions

Solve the linear system

$$
\begin{aligned}
x-y+2 z & =5 \\
2 x-2 y+4 z & =10 \\
3 x-3 y+6 z & =15
\end{aligned}
$$

Solution This system can be solved by inspection, since the second and third equations are multiples of the first. Geometrically, this means that the three planes coincide and that those values of x, y, and z that satisfy the equation

$$
\begin{equation*}
x-y+2 z=5 \tag{9}
\end{equation*}
$$

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9). We can do this by first solving this equation for x in terms of y and z, then assigning arbitrary values r and s (parameters) to these two variables, and then expressing the solution by the three parametric equations

$$
x=5+r-2 s, \quad y=r, \quad z=s
$$

Specific solutions can be obtained by choosing numerical values for the parameters r and s. For example, taking $r=1$ and $s=0$ yields the solution $(6,1,0)$.

Augmented Matrices and Elementary Row Operations

As the number of equations and unknowns in a linear system increases, so does the complexity of the algebra involved in finding solutions. The required computations can be made more manageable by simplifying notation and standardizing procedures. For example, by mentally keeping track of the location of the +'s, the x 's, and the $=$'s in the linear system

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

we can abbreviate the system by writing only the rectangular array of numbers

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

This is called the augmented matrix for the system. For example, the augmented matrix for the system of equations

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=9 \\
2 x_{1}+4 x_{2}-3 x_{3}=1 \\
3 x_{1}+6 x_{2}-5 x_{3}=0
\end{array} \quad \text { is } \quad\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right]
$$

Historical Note

Maxime Bôcher (1867-1918)

The first known use of augmented matrices appeared between 200 в.с. and 100 в.. in a Chinese manuscript entitled Nine Chapters of Mathematical Art. The coefficients were arranged in columns rather than in rows, as today, but remarkably the system was solved by performing a succession of operations on the columns. The actual use of the term augmented matrix appears to have been introduced by the American mathematician Maxime Bôcher in his book Introduction to Higher Algebra, published in 1907. In addition to being an outstanding research mathematician and an expert in Latin, chemistry, philosophy, zoology, geography, meteorology, art, and music, Bôcher was an outstanding expositor of mathematics whose elementary textbooks were greatly appreciated by students and are still in demand today.
[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on the system that do not alter the solution set and that produce a succession of increasingly simpler systems, until a point is reached where it can be ascertained whether the system is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in the associated system, these three operations correspond to the following operations on the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations and an augmented matrix to solve a linear system in three unknowns. Since a systematic procedure for solving linear systems will be developed in the next section, do not worry about how the steps in the example were chosen. Your objective here should be simply to understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the system, and in the right column we solve the same system by operating on the rows of the augmented matrix.

$$
\begin{array}{r}
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}
$$

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right]
$$

The solution in this example can also be expressed as the ordered triple $(1,2,3)$ with the understanding that the numbers in the triple are in the same order as the variables in the system, namely, x, y, z.

Add -2 times the first equation to the second to obtain

$$
\begin{aligned}
x+y+2 z= & 9 \\
2 y-7 z= & -17 \\
3 x+6 y-5 z= & 0
\end{aligned}
$$

Add -3 times the first equation to the third to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
2 y-7 z & =-17 \\
3 y-11 z & =-27
\end{aligned}
$$

Multiply the second equation by $\frac{1}{2}$ to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
3 y-11 z & =-27
\end{aligned}
$$

Add -3 times the second equation to the third to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
-\frac{1}{2} z & =-\frac{3}{2}
\end{aligned}
$$

Multiply the third equation by -2 to obtain

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z= & -\frac{17}{2} \\
z= & 3
\end{aligned}
$$

Add -1 times the second equation to the first to obtain

$$
\begin{aligned}
x+\frac{11}{2} z= & \frac{35}{2} \\
y-\frac{7}{2} z= & -\frac{17}{2} \\
z= & 3
\end{aligned}
$$

Add $-\frac{11}{2}$ times the third equation to the first Add $-\frac{11}{2}$ times the third row to the first and and $\frac{7}{2}$ times the third equation to the second $\frac{7}{2}$ times the third row to the second to obtain to obtain

$$
\begin{aligned}
x \quad & =1 \\
y & =2 \\
& z
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The solution $x=1, y=2, z=3$ is now evident.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x_{1}, x_{2}, and x_{3}.
a. $x_{1}+5 x_{2}-\sqrt{2} x_{3}=1$
b. $x_{1}+3 x_{2}+x_{1} x_{3}=2$
c. $x_{1}=-7 x_{2}+3 x_{3}$
d. $x_{1}^{-2}+x_{2}+8 x_{3}=5$
e. $x_{1}^{3 / 5}-2 x_{2}+x_{3}=4$
f. $\pi x_{1}-\sqrt{2} x_{2}=7^{1 / 3}$
2. In each part, determine whether the equation is linear in x and y.
a. $2^{1 / 3} x+\sqrt{3} y=1$
b. $2 x^{1 / 3}+3 \sqrt{y}=1$
c. $\cos \left(\frac{\pi}{7}\right) x-4 y=\log 3$
d. $\frac{\pi}{7} \cos x-4 y=0$
e. $x y=1$
f. $y+7=x$
3. Using the notation of Formula (7), write down a general linear system of
a. two equations in two unknowns.
b. three equations in three unknowns.
c. two equations in four unknowns.
4. Write down the augmented matrix for each of the linear systems in Exercise 3.

In each part of Exercises 5-6, find a system of linear equations in the unknowns $x_{1}, x_{2}, x_{3}, \ldots$, that corresponds to the given augmented matrix.
5. a. $\left[\begin{array}{rrr}2 & 0 & 0 \\ 3 & -4 & 0 \\ 0 & 1 & 1\end{array}\right]$
b. $\left[\begin{array}{rrrr}3 & 0 & -2 & 5 \\ 7 & 1 & 4 & -3 \\ 0 & -2 & 1 & 7\end{array}\right]$
6. a. $\left[\begin{array}{rrrrr}0 & 3 & -1 & -1 & -1 \\ 5 & 2 & 0 & -3 & -6\end{array}\right]$
b. $\left[\begin{array}{rrrrr}3 & 0 & 1 & -4 & 3 \\ -4 & 0 & 4 & 1 & -3 \\ -1 & 3 & 0 & -2 & -9 \\ 0 & 0 & 0 & -1 & -2\end{array}\right]$

In each part of Exercises 7-8, find the augmented matrix for the linear system.
7. a. $-2 x_{1}=6$
b. $6 x_{1}-x_{2}+3 x_{3}=4, \begin{aligned} & =1 \\ 5 x_{2}-x_{3} & =1\end{aligned}$
$3 x_{1}=8$
$9 x_{1}=-3$
c. $\begin{aligned} 2 x_{2}-3 x_{4}+x_{5}= & 0 \\ -3 x_{1}-x_{2}+x_{3} & =1 \\ 6 x_{1}+2 x_{2}-x_{3}+2 x_{4}-3 x_{5}= & 6\end{aligned}$
8. a. $3 x_{1}-2 x_{2}=-1$
b. $2 x_{1} \quad+2 x_{3}=1$
$4 x_{1}+5 x_{2}=3$
$3 x_{1}-x_{2}+4 x_{3}=7$
$7 x_{1}+3 x_{2}=2$
$6 x_{1}+x_{2}-x_{3}=0$

$$
\begin{array}{llll}
\text { c. } x_{1} & & & =1 \\
& x_{2} & & =2 \\
& & x_{3} & =3
\end{array}
$$

9. In each part, determine whether the given 3-tuple is a solution of the linear system

$$
\begin{array}{r}
2 x_{1}-4 x_{2}-x_{3}=1 \\
x_{1}-3 x_{2}+x_{3}=1 \\
3 x_{1}-5 x_{2}-3 x_{3}=1
\end{array}
$$

a. $(3,1,1)$
b. $(3,-1,1)$
c. $(13,5,2)$
d. $\left(\frac{13}{2}, \frac{5}{2}, 2\right)$
e. $(17,7,5)$
10. In each part, determine whether the given 3-tuple is a solution of the linear system

$$
\begin{array}{r}
x+2 y-2 z=3 \\
3 x-y+z=1 \\
-x+5 y-5 z=5
\end{array}
$$

a. $\left(\frac{5}{7}, \frac{8}{7}, 1\right)$
b. $\left(\frac{5}{7}, \frac{8}{7}, 0\right)$
c. $(5,8,1)$
d. $\left(\frac{5}{7}, \frac{10}{7}, \frac{2}{7}\right)$
e. $\left(\frac{5}{7}, \frac{22}{7}, 2\right)$
11. In each part, solve the linear system, if possible, and use the result to determine whether the lines represented by the equations in the system have zero, one, or infinitely many points of intersection. If there is a single point of intersection, give its coordinates, and if there are infinitely many, find parametric equations for them.
a. $3 x-2 y=4$
$6 x-4 y=9$
b. $2 x-4 y=1$
$4 x-8 y=2$
c. $x-2 y=0$
$x-4 y=8$
12. Under what conditions on a and b will the linear system have no solutions, one solution, infinitely many solutions?

$$
\begin{aligned}
& 2 x-3 y=a \\
& 4 x-6 y=b
\end{aligned}
$$

In each part of Exercises 13-14, use parametric equations to describe the solution set of the linear equation.
13. a. $7 x-5 y=3$
b. $3 x_{1}-5 x_{2}+4 x_{3}=7$
c. $-8 x_{1}+2 x_{2}-5 x_{3}+6 x_{4}=1$
d. $3 v-8 w+2 x-y+4 z=0$
14. a. $x+10 y=2$
b. $x_{1}+3 x_{2}-12 x_{3}=3$
c. $4 x_{1}+2 x_{2}+3 x_{3}+x_{4}=20$
d. $v+w+x-5 y+7 z=0$

In Exercises 15-16, each linear system has infinitely many solutions. Use parametric equations to describe its solution set.
15. a. $2 x-3 y=1$
$6 x-9 y=3$
b. $x_{1}+3 x_{2}-x_{3}=-4$
$3 x_{1}+9 x_{2}-3 x_{3}=-12$
$-x_{1}-3 x_{2}+x_{3}=4$
16. a. $6 x_{1}+2 x_{2}=-8$
b. $\begin{aligned} 2 x-y+2 z= & -4 \\ 6 x-3 y+6 z= & -12 \\ -4 x+2 y-4 z= & 8\end{aligned}$
$3 x_{1}+x_{2}=-4$

In Exercises 17-18, find a single elementary row operation that will create a 1 in the upper left corner of the given augmented matrix and will not create any fractions in its first row.
17. a. $\left[\begin{array}{rrrr}-3 & -1 & 2 & 4 \\ 2 & -3 & 3 & 2 \\ 0 & 2 & -3 & 1\end{array}\right]$
b. $\left[\begin{array}{rrrr}0 & -1 & -5 & 0 \\ 2 & -9 & 3 & 2 \\ 1 & 4 & -3 & 3\end{array}\right]$
18. a. $\left[\begin{array}{rrrr}2 & 4 & -6 & 8 \\ 7 & 1 & 4 & 3 \\ -5 & 4 & 2 & 7\end{array}\right]$
b. $\left[\begin{array}{rrrr}7 & -4 & -2 & 2 \\ 3 & -1 & 8 & 1 \\ -6 & 3 & -1 & 4\end{array}\right]$

In Exercises 19-20, find all values of k for which the given augmented matrix corresponds to a consistent linear system.
19. a. $\left[\begin{array}{rrr}1 & k & -4 \\ 4 & 8 & 2\end{array}\right]$
b. $\left[\begin{array}{lll}1 & k & -1 \\ 4 & 8 & -4\end{array}\right]$
20. a. $\left[\begin{array}{rrr}3 & -4 & k \\ -6 & 8 & 5\end{array}\right]$
b. $\left[\begin{array}{rrr}k & 1 & -2 \\ 4 & -1 & 2\end{array}\right]$

